
DOI: 10.4018/IJHCITP.342839

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Collaborative Solutions to
Software Architecture Challenges
Faced by IT Professionals
Zeeshan Anwar, National University of Sciences and Technology, Pakistan*

 https://orcid.org/0000-0002-8029-0604

Nazia Bibi, National University of Sciences and Technology, Pakistan

Tauseef Rana, National University of Sciences and Technology, Pakistan

Seifedine Kadry, Department of Applied Data Science, Noroff University College, Kristiansand, Norway & Artificial
Intelligence Research Center (AIRC), Ajman University, Ajman, UAE & Department of Electrical and Computer Engineering,
Lebanese American University, Byblos, Lebanon & MEU Research Unit, Middle East University, Amman, Jordan

Hammad Afzal, National University of Sciences and Technology, Pakistan

ABSTRACT

Software architecture serves as a crucial link between problem and solution domains in software
systems. However, reliance on graphical artifacts for architecture design has limitations, especially in
abstract analysis. To overcome these constraints, Architecture Description Languages (ADLs) offer a
more formal approach. Yet, our research reveals that ADLs face numerous challenges, as identified
through interviews, surveys, and community interactions. By mining content from various sources,
including mailing lists and forums, we comprehensively explore the concerns of software engineers.
Employing content mining, topic modeling, and grounded theory, we compile a database of real-world
issues and solutions in software architecture. Comparing our findings with existing literature, we
identify 17 primary issues faced by practitioners. We also compare our results with language models
to ascertain areas of agreement and disagreement. Finally, we propose solutions for each identified
issue to aid future analysts.

KeywoRdS
Architecture Description, Community Question Answering, Content Mining, IT Professionals, Practical
Knowledge, Software Architecture

1. InTRoduCTIon

Perry and Wolf introduced the significance and foundation of software architecture (Taylor et al., 2021).
A software system’s architecture is the system’s structure in terms of the program units (components)
with externally visible proper- ties and connections between these components (Bass et al., 2003;
Hasselbring, 2018). Semantically, the high-level design of a system bridges the gap between the

https://orcid.org/0000-0002-8029-0604

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

2

problem space (requirements) and the solution space (implementation). The architecture of a system
can be represented in different ways that are (Land, 2002; Malavolta et al., 2013; Hasselbring, 2018):
(i) informally by utilizing boxes-and-lines, (ii) semi-formally by utilizing a modeling language (e.g.,
UML) (Deryugina et al., 2019) and (iii) formally by utilizing an Architectural Description Language
(ADL) (Fuxman, 2000).

For software systems, architecture dependent on boxes and lines has constrained expressiveness-
ability; henceforth, it’s not valuable for in-depth analysis and documentation. Interestingly, a formal
portrayal dependent on an ADL includes further subtle elements and depictions of the design, which
can be helpful for various purposes (e.g., better dependency and consistency analyses) (Taylor, 2019).
Despite its promising highlights, ADLs are not generally utilized in industry (Fuxman, 2000) due
to the trouble of utilization and the absence of tool support. The primary explanations behind this
are ADLs are created in confinement (Garlan et al., 2010), ADLs are not general purpose (Woods
and Bashroush, 2012), have no standard (Mishra and Dutt, 2005), produced for scholastic viewpoint
(Fuxman, 2000) and communication gap among researchers and practitioners (Bradbury et al., 2004).
Due to convenience, UML-based representation is being utilized at a wider scale in the industry
(Fuxman, 2000; Taylor, 2019). In the software component model survey (OMG, 2007), UML is
considered an ADL. Rather than boxes-and-lines portrayal, ADL (and UML) based representation
is better for human and machine readability. But UML-based representation does not solve structural
and technical issues (Taylor, 2019).

In the existing work, surveys are used to categorize the architecture representations and identify
the architecture- related issues. For example, surveys carried out to explore and categorize the features
of ADL based representations (Bass et al., 2003; Land, 2002; OMG, 2007; Fuxman, 2000; Kamal
and Avgeriou, 2007; Khan et al., 2016; Capilla et al., 2016; Shahin et al., 2014) and identification
of architecture related issues (Tian et al., 2019; Tamburri et al., 2019; Othmane and Lamm, 2019;
Cai and Kazman, 2019). All these studies are a sort of specialized work as these include findings
depending on some pre-defined criteria/ framework. For example, the work in (OMG, 2007; Kamal
and Avgeriou, 2007) is carried out for a limited set of ADLs. Tian et al. (Tian et al., 2019) applied
grounded theory on 207 Stack Overflow posts to extract architecture smells. In another paper, Tamburri
et al. (Tamburri et al., 2019) surveyed and identified 10 architecture smells in an agile environment.
A tool DV8 (Cai and Kazman, 2019) was developed to detect architecture anti-patterns and measure
modularity. Similarly, Othmane et al. (Othmane and Lamm, 2019) found that architects do not
properly document architecture; therefore, a tool based on a gamification mechanism was proposed.

Although closely related to software architecture, the studies mentioned above lack collecting
the stakeholders’ voices and are limited to a single topic. As identified by Taylor (Taylor, 2019), the
future software architecture concerns are modeling, knowledge capture, Evolution, and Ecosystems.
There is a need to conduct a large-scale study that covers the various aspects of software architecture.
To fill this gap, we conducted this research. Our primary objective is to conduct a large-scale study
that encompasses the diverse dimensions of software architecture, thereby capturing the multifaceted
challenges and considerations faced by stakeholders in the field. By leveraging data sourced from
a myriad of community sites and expanding our scope to encompass a wide array of software
architecture topics, we aim to address the lacuna identified in prior research efforts. Through this
holistic approach, we seek to provide a nuanced understanding of the evolving landscape of software
architecture, shedding light on critical areas that warrant attention and offering insights that can
inform future developments and initiatives in the field.

Utilizing search queries/keywords Architecture Description Language(s), Software Architecture
Tools and Software Architecture, we gathered information from community question-answering
(CQA) sites, mailing lists, and forums such as stack exchange network, yahoo answers, quora, etc.
Consequently, the extent of our work is broader than the related work. For gathering and examining
the extensive informational collection of the previously mentioned sources, our methodology can be
considered the big data analytic to study software architecture and languages/tools to support designing

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

3

software architecture. Our research methodology is more robust as compared with existing research
as it is a mixture of qualitative and quantitative methods. We analyzed the data using text analytics,
network analysis, topic modeling, and grounded theory. This research aims to gather and examine
the concerns of software engineers and IT Professional while utilizing software architecture. The
results of the proposed model are validated with the published literature and Large Language Models
(LLMs) GPT and BRAD. The area of agreement and disagreement between the proposed model and
LLMs are reported to shows the strength of the proposed model in correctly identifying the concerns
of the IT Professionals. The major contributions of our research are given below:

• Our work contributes a comprehensive database of software architecture issues and corresponding
solutions, avail- able for access on GitHub1. This resource serves as a valuable repository for
practitioners and researchers, offering insights into prevalent challenges and potential remedies
in software architecture.

• Our research prioritizes and categorizes the major issues encountered in software architecture,
shedding light on the most pressing challenges faced by practitioners. By organizing these
issues into distinct categories, we aim to provide a structured framework for understanding and
addressing architectural complexities.

• Our analysis reveals the interrelatedness of issue categories in software architecture and facilitates
the development of grounded theories based on identified challenges. By uncovering underlying
patterns and relationships, we contribute to a deeper understanding of architectural dynamics
and inform evidence-based decision-making.

• We have made our research materials, including project data and scripts, openly accessible on
GitHub, promoting transparency and reproducibility in research. By sharing these resources,
we aim to facilitate collaboration and knowledge dissemination within the software architecture
community.

The rest of the paper’s literature review is given in Section 2. Our methodology is given in Section
3, whereas analysis and results are given in Section 4. A comparison of results with literature is given
in 5. Finally, Section 6 presents the conclusion and future work.

2. LITeRATuRe RevIew

This is a multi-disciplinary paper, i.e., a blend of software architecture knowledge, text mining
strategies, and mixed methods. Along these lines, we subdivided the literature review into three
subsections. Section A clarifies different ideas about software architecture and strategies to draw
architecture. Different review papers about software architecture are given in section B. Related work
on mining software engineering repositories is given in section C.

2.1 Software Architecture
Generally, architecture is represented by informal lines and circle drawings in which the components,
properties, connections, and system behavior are defined poorly (Bass et al., 2003). Architecture
patterns and styles are two terminologies used in the system domain, but these terms come from two
different schools of thought. Architectural patterns specify problem-solution space; for every problem,
a generally proven solution can address the problem. Whereas architectural styles represent the rules
that identify the components and connectors to connect these components (Kamal and Avgeriou, 2007).

In architecture design, creating software architecture and adding a description transforms
the architectural information into a viable model. Based on the architecture that is created with
considerations in changing requirements from the market, technology advancement, architecture
dependencies, and other possible factors, a road map for engineering will provide guidance on what

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

4

feature or software component will be implemented first and which will be implemented next, or
later on in the different versions of a software system (Zhao, 2016).

The architectural design is very important to determine the success of software. Therefore,
there must be a tool to support architectural design that can check the consistency and correctness
of the architecture. For this purpose, many ADLs are developed (to support software architecture)
in isolation. Hence, different ADLs have different capabilities and are mostly domain-specific; this
leads to the disadvantage of combining features of different ADLs. To address this disadvantage, some
examples of attempts are mentioned in the rest of this section. Acme solved this problem by combining
features of different ADLs in Acme Studio. The authors explain the features of Acme and combine
the features of Wright and Rapide to develop architecture (Garlan et al., 2010). Navasa et al. (Navasa
et al., 2009) present a new ADL named DAOP-ADL (Dynamic Aspect-Oriented Platform-ADL) by
focusing on component-based software engineering and aspect-oriented programming. In another
study (Mckenzie et al., 2004), two ADLs, Rapide, and Acme, are used for separate purposes. These
experiments prove the usefulness of ADLs for the design and analysis of enterprise architectures.
One reason ADLs are not widely used is the communication gap between the practitioners and the
research community.

Many of the developed ADLs are domain-specific and do not meet the needs of the architecture
of general systems. Wide varieties of ADLs are available in the research domain, but these are seldom
applied to the real information system (Malavolta et al., 2013).

Effective software architecture and design practices are crucial for the success of projects across
the software life cycle. Work of Whiting et al. (Whiting and Andrews, 2020), explores the significance
of maintaining a stable architecture, identifies symptoms of architecture drift and erosion, and examines
existing tools and methods to mitigate these challenges.

In today’s dynamic software landscape, systems must continually evolve and adapt to remain
competitive. This paper addresses the need for a systematic approach to software architecture
reconstruction, aiming to identify common activities and elements essential for guiding this process
effectively. Through rigorous research including a systematic literature review and survey, we propose
a process termed Software Improvement in the Reconstruction of Architectures (SIRA). SIRA
integrates and extends previous research, offering a structured framework for semi-automated software
architecture reconstruction. Additionally, this study identifies key components of the reconstruction
process, including techniques, architectural elements, and automation tasks (Guamán et al., 2020).

2.2 Software Architecture Surveys
In this section, various survey papers related to software architecture are reviewed. A comparison
of these papers is given in Table 1. Software architecture and design are the main pillars of
software engineering. A buggy software may cause problems; therefore, a design should be tested
and analyzed early. This can reduce the risks associated with the development and maintenance
cost. Software architecture maintains the conceptual integrity of the system. In his research,
Taylor reviewed both domain-specific and domain-independent software architecture techniques.
The need and evaluation of various tools and techniques are also discussed. ADLs were created
to represent architecture and solve structural and technical issues, but the business context and
domain-specific concerns cannot be modeled using ADLs. UML is good for modeling business
context and components of architecture. As described by Taylor, analyzing the architecture
requires additional cost because a formal model is required for analysis; therefore, the value
of the information produced by analysis must be considered before running the analysis. As
identified by the author, the future concerns of software architecture are Modeling, knowledge
capture, Evolution, and Ecosystems (Taylor, 2019).

Architecture smells are given less attention as compared with code smells. In his research, Tian et
al. (Tian et al., 2019) extracted 207 posts related to architecture smell from stack overflow and applied
grounded theory to analyze the extracted posts. MAXQDA tool is used for grounded theory. As a

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

5

result, various architectural smells, tools for dealing with architectural smells, causes of architectural
smells, and quality attributes affected by architectural smells are identified.

Wilhelm Hasselbring surveyed the software architectures past, present, and future. In the past,
software architecture was represented using box-and-line diagrams and UML. But these notations are
informal, therefore, formal models like ADLs were created. Software product lines have also become
popular for reusing components. Presently, the focus of the architecture community is on micro services
and quality requirements. Services are used to develop the system quickly in multiple deployable

Table 1. Analysis of Surveys

Paper Scope Limitations

(Taylor, 2019)

Reviewed domain-specific and
domain-independent tools for
architecture. Strengths & Weaknesses
of UML and ADLs are given. The
future concerns related to architecture
are identified.

This paper is based on the review of
existing literature.

(Tian et al., 2019) In this paper, architecture smells are
analyzed.

Only stack overflow posts related to
architecture smells are analyzed.

(Hasselbring, 2018)

In this paper, authors studied
architecture’s past, present, and
future. In the future, highly modular
architecture will be required for agile
development. The emphasis of this
paper is on the architecture for agile
development.

(Clements, 1996) A survey of ADLs is made to discover
their features and system support. O n l y l i m i t e d t o A D L s .

(Khan et al., 2016)

Author conducted a survey to deal
with NFR at the architecture level
because NFR is dealt with at later
stages of development.

This work is limited to dealing with
NFR at the architecture level.

(Keeling, 2015)

Four trends of architecture are:
Architecting for DevOps, Flexible
Designs, Lightweight Architecture
Design Methods, and Renewed
Interest in Software Architecture
Fundamentals.

An overview of conference papers is
given by the authors.

(Mayer and Weinreich, 2019)
Data from 30 respondents is selected
to analyzed and co-relate community
smells and architecture smells.

Only architecture and community smells
are analyzed in an agile environment.

(Tamburri et al., 2019)

Investigates perspectives of key
figures in software architecture
research on empirical methodologies,
highlighting preferences and
challenges.

Limited to perceptions within the
soft- ware architecture community,
may not fully represent broader views
in soft- ware engineering.

(Galster and Weyns, 2023)

Investigating the textual
representation and prevalence of
architectural knowledge concepts
in issue trackers like Jira, with
implications for enhancing software
development practices.

Limited to analysis of issues from
three Apache projects, may not fully
capture the diversity of architectural
knowledge concepts across different
software development contexts.

(Soliman et al., 2021) Related to documenting architecture.

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

6

units. Quality requirements like performance, modifiability, and security can be implemented at the
architecture level. The future research on architecture is its integration into the agile framework because
architecture once developed is hard to change in agile changing environment. To solve this, highly
modular architecture is required, and architecture is enabled in all phases of agile (Hasselbring, 2018).

Architecture Description Languages (ADLs) formally represent a system’s architecture. By
increasing in number, they differ in abstraction and analysis capabilities. In (Clements, 1996), the
authors summarize a survey of ADL’s that characterizes ADLs in terms of (a) the classes of systems
they support, (b) the inherent properties of the languages themselves, and (c) the support of process
and technology they provide to represent, refine, analyze, and build systems from an architecture.

Roohullah et al. surveyed how to deal with non-functional requirements (NFR) at the architectural
level. The authors emphasize the integration of non-functional requirements and architecture. It is
very important to address NFRs as part of the architecture. Functional requirements are considered
at the initial stages of a software project by neglecting the NFRs. NFRs are usually handled in the
final stages of the project, which means quality compromise. NFRs and architecture complement
each other, so both are treated at the architectural level. Run time and not run time NFRs should both
be catered to at the architectural level (Khan et al., 2016).

SATURN-14 conference targeted four trends: Architecting for DevOps, Flexible Designs,
Lightweight Architecture Design Methods, and Renewed Interest in Software Architecture
Fundamentals. DevOps is basically a growing software development approach that covers both
traditional operations as well as to increase software development to enhance origination’s ability
to deliver business value. Secondly, the purpose of this conference is to target how to achieve
design flexibility so that it is flexible enough to accommodate changes. The concept of lightweight
architecture is also discussed. Trimming fats from architecture is always a good idea, i.e., architecture
is lightweight. Architectural modeling skill, lightweight representations, and discussion of the lean
design method is part of the SATURN technical program (Keeling, 2015).

Both communities of researchers and practitioners understand the value of Architecture
Knowledge (AK) but this knowledge evaporates with time if not documented. Lack of motivation is the
major reason for not documenting AK. Authors used gamification to capture the AK as gamification
motivates the users. Software Architecture Knowledge Management (SAKM) toolkit was created
which document architecture profile and provide gamification mechanism. A focused group study
was conducted with graduate students but authors did not find any statically significant evidence
about effect of gamification on capturing AK. But interview with students show that gamification is
worthwhile for AK capturing (Mayer and Weinreich, 2019).

These days most of the companies are using agile methods for software development. Agile
methods in distributed teams may develop community smells like time wrap, cognitive distance, newbie
free riding, power distance etc. These community smells effect the quality of software being developed.
Authors analyzed 30 software organization and co- relate community smells and architecture smells.
Survey, Delphi and interviews are used for data collection. Data from 30 respondents is selected
for analysis. Ten architecture smells e.g. sloppy modularization, untraceable business requirement,
impossible component swap etc. are identified by authors in their analysis. These architecture smells
are correlated with community smells (Tamburri et al., 2019).

Research in software engineering has raised concerns about empirical studies, including
reproducibility and the relevance of findings. However, little is known about how these concerns
are viewed by researchers and evaluators. Focusing on software architecture, a subfield of software
engineering, this study investigates the perspectives of 105 key figures in architecture research on
empirical research methods. Findings reveal a lack of consensus on preferences for quantitative
versus qualitative methods, the value of professional versus student participants, and the prioritization
of internal versus external validity. While replication studies are generally valued, challenges in
execution are acknowledged. These findings highlight the limited consensus on empirical research

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

7

methodologies within the software architecture community, with implications for researcher training
and practice (Galster and Weyns, 2023).

The research outlines a study investigating how architectural knowledge concepts are conveyed
in issue trackers like Jira, examining their textual representation, prevalence, and relationships.
Analyzing issues from three Apache projects, the study identifies architecturally relevant items by
linking them to pertinent source code changes. Through manual la- beling and coding, the research
aims to facilitate the development of effective search tools for identifying architectural knowledge
concepts in issues, potentially enhancing software development practices. While the abstract provides
a succinct overview of the research aims and methodology, further clarity on specific findings and
practical implications would enhance its comprehensiveness (Soliman et al., 2021).

The research of Wan et al. (Wan et al., 2023) study the gap in understanding how practitioners
engage in software architecture-related activities and the challenges they encounter. To address this
gap, authors conducted interviews with 32 practitioners representing 21 organizations across three
continents. Through this research, authors identified the key challenges faced by practitioners in
software architecture practice throughout various stages of software development and maintenance.
This study highlights common activities in software architecture, spanning requirements analysis,
de- sign, construction, testing, and maintenance, and elucidates the corresponding challenges faced by
practitioners. Notably, findings reveal that many of these challenges revolve around issues related to
management, documentation, tooling, and processes. Furthermore, authors compile recommendations
to mitigate these challenges, offering valuable insights for practitioners and researchers alike in
addressing the complexities of software architecture practice.

2.3 Issues Faced by IT Professionals in Software Architecture design
Common challenges are encountered in software architecture design, including issues related to
development consistency, architectural quality, reliability, management effectiveness, environmental
factors, development constraints, cost considerations, skill shortages in highly specialized workforce,
technology adequacy, traditional co-location models, privacy concerns, communication workflow gaps,
trust deficits, market expansion hurdles, framework integration complexities, effectiveness limitations,
assessment deficiencies, and scheduling inefficiencies (Rehman and Khan, 2022). Moreover,
the estimation and enhancement of quality attributes in software architectures pose considerable
challenges, demanding significant time and effort (Di Pompeo and Tucci, 2023). Similarly, the
design of data-intensive systems presents its own set of obstacles, encompassing concerns such as

Table 2. Challenges faced by IT Professionals in Software Architecture Design

Article Identified Challenges

(Rehman and Khan, 2022) Lack of common development, reliability, management
issues, and development limitations.

(Di Pompeo and Tucci, 2023)

Estimation and improvement of quality attributes is
challenging and time-consuming. Improvement of quality
attributes may require contrasting refactoring actions on
the architecture.

(Ho-Quang et al., 2020)
Little research in software architecture validated beyond
individual case studies. Huge effort needed for Big Data-
driven research.

(Villegas et al., 2017) Separation of concerns between monitoring, self-
adaptation controller, and control objectives.

(Seifermann et al., 2018) Approaches for maintaining security properties fail to
exploit architectural design.

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

8

data management, system design and implementation challenges, messaging service complexities,
security and privacy apprehensions, data volume issues, data dissemination hurdles, data curation
challenges, considerations related to software reuse and the utilization of open-source software,
data search intricacies, data processing and analysis complexities, and the intricacies of information
modeling (Dimov et al., 2022). A list of challenges identified in various articles are given in Table 2.

2.4 Mining Software Repositories
There are hundreds of tools and techniques for analyzing and mining the data. In this section we limit
our focus to analysis tools that are used for analyzing the community question answering (CQA)
sites only. The main application of these tools is text mining of CQA sites. The analysis tools used
in literature are for text features extractions (text mining and topic modelling), data visualization and
analysis, textual similarity, and classification and prediction. Some of the literature in which Stack
Overflow (SO), a CQA site, data set is used for aforementioned tasks is given below:

Using Latent Dirichlet Allocation (LDA) for topic identification, Allamanis et al shows that
confusing programming concepts can be identified by analysing SO data (Allamanis and Sutton,
2013). In (Arwan et al., 2015), source code is retrieved from SO data (by using Mallet and LDA)
to facilitate programmers. Barua et al (Barua et al., 2014) created a topic set after applying (by use
of Mallet) on SO data. Another very interesting study (Campbell et al., 2013) identifies deficient
project documentation by applying LDA on project documentation and SO questions. In (Bazelli
et al., 2013), the personality traits of stack overflow users are studied by using Linguistic Inquiry
and Word Count (LIWC). In (Bosu et al., 2013), authors proposed guideline for users who want to
gain reputation quickly on SO. Souza et al (de Souza et al., 2014) used textual similarity and crowd
evaluation mercies to design a recommendation system to assist development. Anwar et al. (Anwar et
al., 2023) developed model based on the CNN and LSTM to categorize the Stack Overflow question
based on the content quality. In another research, Anwar et al. proposed a multi-model based framework
to use Stack Overflow data for open innovation in software engineering (Anwar and Afzal, 2024).

Research methodology of Bajaj et al. (Bajaj et al., 2014) is somehow relevant to our work. Bajaj
had used LDA and Natural Language Processing (NLP) toolkit for mining SO data after using a
stemming algorithm. The authors use mixed method analysis. Topics are first categorized then hot

Figure 1. Research Methodology

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

9

topics are identified, temporal trends are identified, web topics in mobile development are identified
and main technical challenges are identified.

3. ReSeARCH MeTHodoLogy

Rather than the ordinary methodologies in the related work, our methodology is novel that gathers
the genuine questions with respect to software architecture posed by the practitioners. The common
steps required to analyze information from web are: 1) data extraction, 2) data pre-processing, 3) data
analysis and 4) displaying results. Our philosophy for gathering and examining information is given
in Figure 1. The major modules of research methodology are given in Figure 2 and are described in
the subsequent sections.

3.1 data Collection
The data collection process involved selecting a diverse range of social learning platforms, including
blogs, forums, community question answering (CQA) sites, and mailing lists, renowned for their
widespread popularity and relevance to the domain of software architecture. Our selection criteria were
carefully crafted to prioritize platforms based on their user engagement, dataset size, and alignment
with software architecture themes. Our data collection efforts commenced in April 2021 and updated
in June 2023, to incorporate the latest data in the research.

To construct a comprehensive dataset comprising questions and answers, we focused on eight
prominent platforms and mailing lists, namely Yahoo Answers, Stack Exchange Network, Quora,
ResearchGate, ArchStudio, and Pallaido. These platforms were chosen for their substantial user
bases and extensive repositories of software architecture-related content. The selection of keywords,
including “Architecture Description Language(s)”, “Software Architecture Tools”, and “Software
Architecture”, was informed by an exhaustive literature review and a pilot study of 150 posts. Through
iterative refinement, we identified these keywords as most relevant to the scope of our work.

Data collection was facilitated through a combination of API utilization and manual crawling
techniques. While APIs provided streamlined access to platform data, manual crawling was employed
in cases where APIs were unavailable or insufficient. The collected data, encompassing questions
and answers, was stored in various formats, including CSV, HTML, and TXT. To standardize the
data format for text analysis purposes, we developed PHP scripts to convert CSV and HTML files to
TXT format, aligning with the requirements of the RQDA tool.

Quality assurance measures were implemented to ensure the integrity and reliability of the
collected data. This involved leveraging insights from a comprehensive literature review to establish
a database of software architecture-related problems highlighted in prior research. This database

Table 3. Data Acquisition from various sites / mailing lists

Sr. No. Site / Mailing List Questions

1 Stack Overflow 189

2 Programmers 35

3 Software Engineering 10

4 Yahoo Answers 27

5 Quora 68

6 ResearchGate 05

7 ArchStudio (mailing list) 1019

8 Palladio-dev (mailing list) 1091

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

10

served as a guiding framework throughout the coding and categorization process of posts, enhancing
the accuracy and relevance of our analysis. Additionally, we capitalized on the features offered by
community question answering sites to mitigate the presence of fake posts. Platforms such as Stack
Overflow provided mechanisms for marking questions as duplicate and enabling users to vote on the
credibility of questions and answers. In our research, we disregarded questions marked as deleted,
duplicate, or receiving negative scores, thereby enhancing the credibility of our dataset. Our initial
data set of Q&A contains a total of 2455 (given in Table 3) questions and answers. The data cleaning
process is applied to delete the irrelevant Q&A. After cleaning, the final data set contains 282 questions.

3.2 data Pre-Processing
We pre-processed data prior to analysis in R. R TextMining (TM) Library (Group, 2012) is utilized
for pre-processing data and to perform content analysis. For data pre-processing we used R Text
Mining (TM), Snowball packages and our customized functions. Data cleaning is a step of data
pre-processing. Pre-processing makes data ready for further analysis. Text data is un-structured and
contain noise like numbers, punctuation, email addresses, web links etc. Data cleaning is necessary to
delete the unwanted text from the data. Data cleaning process prevent memory hogged. Data cleaning
also involves removing punctuation’s, URLs, email addresses, extra white-spaces (strip), special
characters, stop words, HTML Tags and stemming words to root words. We performed stemming
for text analytics section only. Stemming and Lemmatization are alternate options. Stemming is a
crude process whereas, lemmatization is performed in a systematic way. The usage of stemming and
lemmatization depends on particular use case. Where semantic information about words is required,
lemmatization is a good choice as compared to stemming. In our case, our goal is to get an overview
of collected data quickly and find the possible relationships between terms.

We used the text analytics to test the quality of collected data before performing in-depth manual
analysis, i.e. grounded theory. Therefore, we opted for stemming by using Snowball Stemmer. We
converted all documents to lower case and in plain text format. In addition to this, we also developed
a small dictionary to remove words that are associated to Q&A sites vocabulary like (reputation,
score, tag, answer-count, question-count, comment, votes, creation date, etc.). These words appear
in each post. These words were selected from post of CQA sites manually and added into dictionary.
Removal of these words from corpus improves quality of results as these words do not add any value
and agitate knowledge extraction using text mining.

3.3 data Analysis
After data pre-processing we analyzed the data. We perform three types of analysis i.e. text analysis,
topic modeling and qualitative analysis on collected data.

3.3.1 Text Analysis
We compiled a comprehensive corpus comprising all questions and answers (Q&A) and subjected it to
content mining using the R TextMining Library. This process involved constructing a term-document
matrix to represent the frequency of uni-gram, bi-gram, and tri-gram tokens within the corpus.
Uni-grams are single words that appear in the text, while bi-grams are pairs of adjacent words, and
tri-grams are sequences of three adjacent words. Analyzing these token sets helps in understanding
the frequency, distribution, and context of words and phrases used in the dataset.

Subsequently, we conducted an array of analyses on these token sets, including term frequency
charting, word cloud generation, and network analysis. Term frequency charting involves visualizing
the frequency of words or phrases in the dataset, allowing us to identify the most common terms and
their distribution. Word clouds visually represent the frequency of words in a dataset, with larger
font sizes indicating higher frequencies. These visualizations served as valuable indicators of the
informational richness of the selected Q&A dataset for our investigation.

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

11

Moreover, hierarchical clustering techniques were employed to group similar tokens, facilitating
the identification of common themes or topics within the dataset. Hierarchical clustering is a method
for grouping similar data points into clusters based on their similarities. It helps in organizing and
structuring the dataset, revealing underlying patterns and relationships among the data.

Additionally, to elucidate the interconnections between categories, we utilized a network analysis
tool called Gephi. Network analysis involves studying the relationships between entities represented
as nodes in a network. It helps in understanding the complex interactions and dependencies among
different elements in the dataset, uncovering hidden structures and patterns. Overall, these analytical
techniques provided valuable insights into the content and structure of our collected dataset, enabling
us to validate its suitability for in-depth analysis.

3.3.2 Topic Modeling
Topic modeling, an unsupervised machine learning technique, holds significant value in extracting
crucial insights from data without the need for manual review. Central to this technique is Latent
Dirichlet Allocation (LDA), a widely recognized method within the realm of topic modeling. LDA
has garnered substantial attention from researchers across diverse fields, as evidenced by its adoption
in previous studies (Allamanis and Sutton, 2013; Arwan et al., 2015; Barua et al., 2014; Campbell
et al., 2013; Bazelli et al., 2013; Bosu et al., 2013; de Souza et al., 2014) for mining Community
Question Answering (CQA) sites. Leveraging LDA, we extracted essential topics from our corpus,
illuminating key themes embedded within the dataset. However, it’s important to note that LDA does
not inherently assign labels to extracted topics; rather, it furnishes a list of words associated with
each topic. To address this, we employed a pragmatic approach by assigning topics to words based
on their frequency, with the top four terms serving as pivotal indicators. The Mallet implementation
of LDA (McCallum, 2002) was utilized for topic extraction, with the determination of the optimal
number of topics guided by coherence values.

Prior to running LDA, standard pre-processing steps, as outlined in the Data Pre-Processing
subsection, were meticulously executed to ensure data quality and consistency. This included
procedures such as text normalization, tokenization, and removal of stop words and irrelevant

Figure 2. Detailed Research Methodology

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

12

characters. In the context of our research, topic modeling assumes a critical role in streamlining
the coding process. By generating a comprehensive list of keywords and topics derived from the
dataset, topic modeling empowers coders with valuable insights, thereby expediting the coding and
categorization process. This proactive approach not only enhances efficiency but also augments the
accuracy and reliability of the coding endeavor, ultimately saving valuable time and resources.

3.3.3 Qualitative Analysis
Qualitative analysis of the data was conducted utilizing Grounded Theory methodology, as proposed
by Corbin and Strauss (Corbin and Strauss, 1990). This rigorous approach involved a systematic
examination of the dataset, with authors meticulously scrutinizing each line of text to discern and
assign codes to significant points. Codes were attributed to terms, phrases, and sentences deemed
pertinent to the research inquiry, adhering to the principles of open and axial coding. This iterative
process of coding, facilitated by the R-Qualitative Data Analysis (RQDA) tool (Chandra and Liang,
2016), enabled the systematic organization and categorization of data elements.

Grounded Theory methodology emphasizes the iterative nature of qualitative analysis, wherein
codes emerge from the data itself rather than being predefined by the researcher. Open coding involves
the initial exploration and identification of concepts within the data, while axial coding focuses on
establishing relationships between these concepts. Through this process, codes are iteratively refined
and grouped into categories, capturing the underlying structure and interconnections within the dataset.

An essential aspect of Grounded Theory analysis is its capacity to generate rich conceptual
frameworks from empirical data. The output of this methodology typically consists of a network of
interconnected codes and categories, visually depicted through network plots. These plots serve as
visual representations of the relationships and connections between different concepts, providing
insights into the underlying structure of the dataset.

The RQDA tool facilitates the execution of various aspects of Grounded Theory analysis, including
coding, categorization, and visualization of results. By leveraging the features offered by RQDA,
researchers can effectively navigate the complexities of qualitative data analysis, ultimately yielding
robust and meaningful insights into the phenomena under investigation.

4. ReSuLTS And AnALySIS

In this section, we begin by explaining the working of our proposed model through an illustrative
example. Following this, we present the outcomes derived from each module within the methodology.
The simulation of our research method- ology on a Stack Overflow question is visually depicted in
Figure 3. Initially, a Stack Overflow question was collected in CSV format. Subsequently, a conversion
to TXT format was undertaken for subsequent analysis. To facilitate this conversion, dedicated PHP
scripts were developed, as TXT format aligns optimally with text analysis requirements and serves
as the default format for the RQDA tool. Post-conversion, a data cleansing procedure was applied to
eliminate extraneous Q&A instances. In the instance depicted, wherein a solitary question was selected,
the cleansing step was deemed un- necessary. Pre-analysis data preparation was then undertaken in R,
leveraging the capabilities of the R TextMining (TM) Library (Group, 2012). For data preprocessing, a
combination of the R Text Mining (TM) and Snowball packages, along- side bespoke functions, were
employed. This preprocessing phase rendered the data amenable for subsequent analysis. Notably,
text data inherently carries structural irregularities and extraneous elements such as numerical values,
punctuation, email addresses, web links, etc. Thus, data preprocessing assumed a pivotal role in purging
the dataset of such superfluous elements. Furthermore, the preprocessing endeavor encompassed the
removal of punctuation marks, URLs, email addresses, excess whitespace (strip), special characters,
stop words, HTML tags, and the stemming of words to their root forms. Following the completion
of the second step, the dataset is ready for further analysis.

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

13

In the third step, text analytics was employed to assess the integrity of the gathered data prior
to embarking on comprehensive manual analysis, specifically grounded theory methodology.
Additionally, a tailored dictionary was curated to filter out terms intrinsic to Q&A site vernacular,
such as “reputation,” “score,” “tag,” “answer-count,” “question-count,” “comment,” “votes,” “creation
date,” among others, which recurrently feature in each post. These terms, identified through manual
curation of CQA site posts, were incorporated into the dictionary to facilitate their removal from the
corpus. The elimination of such terms enhances result quality by eliminating extraneous information
that does not contribute to knowledge extraction through text mining. Subsequently, content mining
was executed on questions utilizing the R TextMining Library. Following the creation of the term-
document matrix, uni-gram, bi-gram, and tri-gram tokens were extracted. Term frequency analysis,
word cloud visualization, and network analysis were conducted on these token sets to assess the
significance of the selected Q&A dataset for the study. Plots depicting word frequencies derived
from uni-gram, bi-gram, and tri-gram tokens served as validation tools to ascertain the presence of
requisite content within the collected dataset before proceeding with in-depth analysis. Hierarchical
clustering techniques were deployed to categorize similar tokens, while network analysis utilizing
the Gephi tool (Bastian et al., 2009) was employed to discern interconnections between categories.

In the fourth step, we employed Latent Dirichlet Allocation (LDA) to uncover salient topics within
the question under analysis. Mallet (McCallum, 2002), an implementation of LDA, was employed to
extract topics from the question. In the specific example under consideration, the outcomes of the LDA
analysis are elucidated in step four of Figure 3. These LDA-derived topics were instrumental in aiding
coders during the qualitative analysis phase utilizing grounded theory methodology. By providing a
preliminary overview of the dataset, the results of the LDA analysis streamlined the decision-making
process for the coders, thereby enhancing efficiency and efficacy in subsequent coding endeavors.

Figure 3. An example of proposed framework simulation

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

14

In the fifth phase, we applied grounded theory to discern key terms, referred to as codes, and
subsequently allocated these codes to pertinent categories. To ensure the integrity and thoroughness
of our data analysis, we adopted two complementary methodologies. Initially, we conducted a
comprehensive literature review to identify prevalent issues pertaining to software architecture,
compiling a database of challenges highlighted by prior research. This database served as a guiding
framework throughout the coding and categorization process of the posts. Additionally, leveraging
the outcomes of the LDA analysis described earlier, we expedited the coding process. In the provided
example, codes and their associated categories are highlighted in boldface. The codes designated
by coders in the aforementioned example include “looking for,” “good articles,” “fault-tolerant
software architectures,” and “recommendations.” These codes were subsequently categorized into
two overarching themes: “Architecture Type” and “Architecture Knowledge.”

In the sixth step, we embark on an extensive review of published literature to identify and
enumerate various concerns related to architecture. These concerns are meticulously scrutinized and
cataloged, encompassing a wide array of topics ranging from design principles to scalability and beyond.
Subsequently, in the seventh step, we meticulously compare these identified concerns with the results
gleaned from the grounded theory approach. This comparative analysis serves as a crucial mechanism
for validating the findings of our research in light of the existing body of literature. By comparing our
findings with established literature, we aim to corroborate the robustness and validity of our research
outcomes, ensuring that our contributions are firmly grounded in the broader academic literature.

In the example provided, the identified codes and their corresponding categories are subjected
to rigorous validation against the framework proposed by Mayer et al. (Mayer and Weinreich, 2019)
in the realm of architecture knowledge management. This validation process involves scrutinizing
the alignment between our findings and the insights put forth by Mayer et al., thereby corroborating
the relevance and applicability of our research outcomes within the existing scholarly landscape.

In the next sections, the results of text analytics, topic modeling (LDA) and grounded theory to
analyze the information on the entire corpus are given. Text analytic comprises of analyzing the uni-
gram, bi-gram and tri-gram tokens. We utilized term frequency chart, word cloud, network analysis
and hierarchical clustering. The majority of the content examination is performed by composing an
R language script. While, we utilized grounded theory which is a qualitative technique to perform
information examination and extraction of useful information.

4.1 Text Analytic
We conducted an analysis of the corpus using various techniques including word frequencies, word
clouds, and net- work plots utilizing both Term Frequency (TF) and Term Frequency Inverse Document
Frequency (TF-IDF) methods. Our analysis revealed that ’Software Architecture,’ ’Architecture
Design,’ and ’Architecture Description’ were the most frequently occurring bi-gram tokens based
on term frequency. Similarly, these terms were also prominent when utilizing TF-IDF. Additionally,
’Software Architecture Design,’ ’Difference Software Architecture,’ and ’Architecture Description
Languages’ emerged as the most commonly occurring tri-gram tokens in the corpus.

For the sake of brevity, we have uploaded the figures depicting uni-gram, bi-gram, and tri-gram
tokens to our online project repository, which can be accessed via GitHub Repository2. These visual
representations provide a clearer insight into the distribution and frequency of terms within the corpus.

Word cloud visualization offers an intuitive method to identify the most prominent terms within a
text corpus. By visually representing word frequencies, word clouds assign weights to words based on
their occurrence frequencies, thereby highlighting the key concepts and themes present in the dataset.
In our analysis, terms such as ’Software,’ ’Design,’ ’Architecture,’ ’WADL,’ and ’System’ emerged
as the most frequently encountered in the word cloud of uni-gram tokens. Similarly, ’Programming
Architecture,’ ’Architecture Description,’ and ’Architecture Design’ were prominently featured as
bi-gram tokens within the QA corpus.

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

15

The utilization of word clouds serves the purpose of gaining insights into the composition
and thematic focus of the dataset. By examining the most prevalent terms, researchers can gain a
preliminary understanding of the dominant topics and areas of interest encapsulated within the corpus.
To facilitate further exploration and analysis, we have made the word cloud plots available online,
allowing stakeholders to visually inspect and interpret the distribution of terms within the dataset.
These visual representations offer a convenient means to assess the contents and thematic patterns
of the dataset, thereby aiding in subsequent data-driven decision-making processes.

Social Network Analysis (SNA) stands as a versatile and invaluable tool for visualizing and
dissecting textual corpora. Leveraging SNA, we constructed social network graphs representing both
uni-gram and bi-gram terms derived from the corpus, employing both Term Frequency (TF) and
Term Frequency Inverse Document Frequency (TF-IDF) approaches. These graphs offer a holistic
view of the interrelationships among the 40 most frequent terms within the dataset.

In Figure 4, we present the social network graph depicting the connections between bi-gram
tokens. Notably, the graph unveils intricate patterns of connectivity, shedding light on the prevalent
themes and topics encapsulated within the corpus. Among the observed connections, prominent
terms such as ’Software Engineering,’ ’Software Architecture,’ ’Architecture Design,’ ’Architecture
Description,’ and ’System Architecture’ emerge as highly interconnected nodes. This observation
suggests a recurring theme in user queries, indicating a substantial interest and engagement with
these topics within the community.

Conversely, terms like ’Data Access,’ ’Business Layer,’ and ’Business Logic’ are depicted as
sparsely connected nodes within the network graph. This finding suggests that these concepts appear
less frequently in user inquiries, potentially indicating a narrower scope or less prevalent interest
among users. By scrutinizing the social network graphs, researchers can glean valuable insights into
the underlying structure and dynamics of the corpus. These visualizations serve as powerful tools
for identifying key themes, detecting patterns of interaction, and uncovering latent relationships
among terms. As such, they offer a robust framework for conducting in-depth analyses and informing
strategic decision-making processes. To unravel the intricate relationships among uni-gram, bi-gram,

Figure 4. Network Graph of Bigram Terms

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

16

and tri-gram tokens within our dataset and to categorize them into cohesive clusters, we employed
hierarchical clustering methodology. This analytical approach allowed us to identify tokens sharing
similar semantic contexts, facilitating the discernment of recurring themes and prevalent topics
within the corpus.

In our investigation, the hierarchical clustering of bi-gram tokens revealed notable patterns, with
’Software Design’ emerging as a central theme intricately linked with various other terms within the
cluster. Additionally, terms like ’Different Software,’ ’Architecture Design,’ ’Enterprise Architecture,’
’Design Software,’ and ’Design Patterns’ formed distinct clusters, indicative of prevalent topics
discussed within the community’s Q&A interactions. Furthermore, the grouping of terms such as
’Software Architecture,’ ’Software Design,’ ’Architecture Description,’ and ’Design Patterns’ within
the same cluster suggested a strong semantic association, implying their frequent co-occurrence
and potential significance in discussions on optimal design solutions. Visual representation of this
clustering process can be found in Figure 5, offering insights into the corpus’s underlying structure
and prevalent discourse patterns.

4.2 grounded Theory
By utilizing RQDA Tool we applied Grounded Theory on the Q&A. At first, we read every post
and utilized open coding to code all the critical content of Q&A. At that point we combined the
related code and aggregate 94 codes were recognized by the authors. Next, we analyzed the codes
and made 14 code categories and relegated related code to these categories. The coding process
was finished by the three authors. Every author involved in coding also checked the coding of other
author and in case of disagreement codes were re-assigned. The fourth author supervised & reviewed
the coding and settle the 14 coding conflicts by combining the comparable codes and expelling the

Figure 5. Hierarchical clustering of bi-gram terms

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

17

duplicate ones. Top codes that were observed by the authors are given in Table 4. Codes are given
in first column of table, second column of table is occurrence frequency of code and in the third
column number of post is given in which code appears. The most of the question i.e. (70+41=111)
that practitioners asked are about the clarification of architecture concepts. It means there are many
confusions about the concepts of architecture among the community. The third most popular code
is about architecture styles. 36 codes are about the understanding of architecture. In these questions
users shared their architecture problem and want further clarification of their shared architecture.
36 codes are related to architecture patterns. There are 30 occurrences of architecture tools related
questions. 29 questions are about the design decisions like selection of suitable architecture style or
pattern for a particular problem.

The visualization of grounded theory, depicted in Figure 6, provides a comprehensive overview
of the categories and codes derived from our analysis. Within this visual representation, categories
are denoted by colored circles, while individual codes are depicted in white. Notably, categories such
as Advantages of Architecture, Architecture Knowledge, Architecture Description Languages, and
Designing Architecture emerge as prominent focal points, reflecting the primary areas of questions
among practitioners. To delve deeper into the intricate relationships between these categories and
codes, we leveraged Gephi, a powerful network visualization tool. By exporting the data from RQDA
to Gephi, we generated a Network Graph showcasing the interconnectedness of codes and categories,
as illustrated in Figure 6.

Upon examination of the Network Graph, a distinct pattern emerges: a significant portion of
practitioner inquiries revolves around Architecture Tools, reflecting a collective interest in enhancing
proficiency and skill-sets within this domain. Moreover, the visualization highlights the interconnected
nature of certain categories, such as Software Architecture Patterns, Knowledge of Architecture, and
Advantages of Architecture, indicating overlapping themes and shared concerns within the architectural
discourse. Notably, these categories are linked through common codes, underscoring the multifaceted
nature of architectural challenges and the nuanced interplay between various concepts.

Furthermore, our analysis reveals that a substantial number of issues—61 out of 94—span
multiple categories, under- scoring the complexity and interconnectedness of architectural concerns.
Specifically, 28 issues are associated with more than three categories, with an additional 15 issues
addressing more than three categories concurrently. For a comprehensive list of these multifaceted

Figure 6. Grounded Theory Network

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

18

issues and their respective category affiliations, please refer to the supplementary materials provided
at 3. Within Figure 7, we have highlighted issues that pertain to more than three categories, offering
insights into the breadth and depth of architectural challenges faced by practitioners.

The concept map illustrates various interconnected concepts related to software architecture. At
the center of the map is the overarching concept of the “Advantages of Architecture,” which serves
as a focal point for understanding the benefits associated with architectural practices in software
development. Branching out from this central node are several key concepts, including “Architecture
and Requirements,” emphasizing the relationship between architectural decisions and project
requirements, and “Understanding of Architecture,” highlighting the importance of comprehension
in architectural design. These nodes are complemented by “Architecture Types,” which denotes the
different architectural styles or paradigms that developers may employ.

Furthermore, the concept map delves into the practical aspects of architectural design, with
nodes such as “App Architecture” and “Designing Architecture” focusing on the application
and implementation of architectural principles. The map also encompasses aspects related to
architectural description and documentation, as indicated by nodes like “Architecture Description” and
“Architecture Description Languages,” underscoring the significance of clear and concise architectural
documentation. Additionally, the map recognizes specialized areas within architectural practice, such
as “Architecture Patterns” and “Domain Specific ADLs,” reflecting the diversity and specialization
within the field. Overall, the concept map provides a comprehensive overview of the interconnected
concepts that constitute the domain of software architecture, highlighting their interdependencies
and significance in software development processes.

Table 4. Top Codes

Code Frequency Files

Learning Architecture 70 66

Architecture Questions 41 36

Architecture Styles 40 37

Understanding of Architecture 36 30

Architecture Patterns 36 32

Architecture Tools 30 22

Design Decisions 29 25

Software Architecture 27 27

Suitable Architecture Selection 27 25

Architecture Design 17 11

ADL Tool 16 13

Drawing Architecture 16 16

Identify Architecture Type 15 15

Architecture Evaluation 13 10

MVC and Layered 13 11

Software Architect 13 9

Architecture Problems 12 12

Documenting Architecture 12 10

Implementation Issues 12 12

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

19

4.3 Topic Modeling
We used Latent Dirichlet Allocation (LDA) for topic modeling. LDA being a statistical topic modeling
technique can be used as an alternative of Grounded Theory. The difference in LDA and Grounded
theory is that LDA is fully automated and automatically extract topic keywords. Whereas, Grounded
Theory is a manual techniques which require reading of whole corpus. The topic keywords extracted
by LDA can be compared with codes of Grounded Theory whereas, categories of Grounded Theory
can be compared with LDA topics. LDA results can also verify the quality of analysis performed by
using Grounded Theory. Mallet (McCallum, 2002) which is implementation of LDA is used to extract
topics from the corpus. We ran the LDA for 10, 20 and 30 topics. Maximum Coherence Score 0.466
is achieved by running LDA for 30 topics its means 30 topics are in the corpus. List of all topics is
given in Table 5. Topics are numbered from 0 to 29. Topic number 1, 2, 5 and 26 are related to post
attributes of CQA sites. These topics can be deleted because they add no value to the analysis. From
this we can say that there are 26 significant topics in the corpus. Layered Architecture with Topic
Rate of 0.542 is most prominent topic on the selected CQA sites. Features of Architecture Tool with
Topic Rate of 0.539 is second most prominent topic. A list of top eight topics is given in Table 6.
From this list we can observe that most of statistically significant architecture problems are related
with the architecture patterns, tools features, documentation and definition.

5. evALuATIon And dISCuSSIon

We further compared our results with the findings of various research papers (Malavolta et al., 2013;
Fuxman, 2000; Garlan et al., 2010; Woods and Bashroush, 2012; Mishra and Dutt, 2005; Bradbury
et al., 2004; Kamal and Avgeriou, 2007; Khan et al., 2016; Capilla et al., 2016; Shahin et al., 2014;
Clements, 1996; Keeling, 2015; Medvidovic and Taylor, 2000; Ozkaya and Kloukinas, 2013; Woods
and Hilliard, 2005; Patwardhan and Patwardhan, 2016; Schriek et al., 2016; Taylor, 2019; Deryugina
et al., 2019; Cai and Kazman, 2019; Mayer and Weinreich, 2019; Wan et al., 2023). This section
compares the findings of various researchers and pertinent post that we have identified from CQA
sites. This segment additionally demonstrates that our findings are in accordance with the existing
research. But our method of research is unique as compared with the existing research on the topic
and unlike previous research which is restricted to one topic/ problem, we covered the broad range
of issues. The comparison is given in Table 7. First column of the table is issues that are recognized
from the literature, Second column is depiction of issue explained in the literature. The third column
is reference to pertinent code that we distinguished through grounded theory during coding from
community posts lastly, analysis of the issue is also given. The analysis depends on the perspectives
of the community users, i.e. we return to the pertinent posts and based on the feedback of users
propose the solution of the problem. The analysis describes the reason for the issue and it will be
helpful for future researchers. Each column of the table is an independent research area that will add
to the knowledge of software architecture.

The primary findings of this research are as seventeen recognized issues and their proposed
solution. We grouped these issues into five broader concepts. A brief description of each concept
and proposed solution is summarized below:

• Knowledge Management and Standardization: The first category encompasses efforts aimed at
managing and standardizing architectural knowledge. IT professionals often encounter difficulties
in accessing relevant information and standardized representations of architectural concepts.
Thus, the study advocates for the creation of databases and knowledge management systems to
capture known issues and solutions. Additionally, standardizing architecture representations and
notations can streamline communication and comprehension among practitioners, facilitating
more efficient collaboration and problem-solving.

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

20

• Integration and Flexibility: Integration challenges and the need for architectural flexibility
constitute another significant category of concerns. Software integration issues can hinder
system interoperability and performance, necessitating robust modeling languages and tools to
address these complexities. Moreover, designing flexible architectures capable of accommodating
evolving requirements and changes in software development processes is crucial for long-term
viability and maintainability.

Table 5. Topics extracted from Corpus

ID Topic Words Rate

0 Database Application Design database, application, design, good, follow, web, multiple, company, destination, pattern 0.411

1 Question Attributes answercount, tag, work, closeddate, score, body, software, deletiondate, commentcount, lasteditdate 0.476

2 Post Attributes architecture, body, commentcount, favoritecount, creationdate, deletiondate, answercount, parentid,
lasteditdate, viewcount 0.416

3 Architecture Literature good, system, model, resource, book, service, question, product, top, approach 0.290

4 Technology Time time, year, technology, system, provide, work, product, student, current, approach 0.188

5 Answer Attributes viewcount, body, parentid, posttypeid, tag, owneruserid, creationdate, commentcount, score,
favoritecount 0.666

6 Diagram and Code Request answer, diagram, code, vote, uml, architect, work, detail, case, mar 0.302

7 Generate Code code, view, create, controller, method, add, problem, object, event, require 0.289

8 Software Architecture Tool tool, software, architecture, source, run, good, verticle, present, support, call 0.305

9 Component Interface interface, component, myx, archstudio, framework, brick, architecture, make, connector, object 0.238

10 Archstudio Questions file, interface, component, brick, archstudio, create, class, project, architecture, select 0.309

11 Web Services web, rest, api, soap, service, db, context, standard, net, protocol 0.281

12 Software Code code, software, project, deletiondate, base, implement, public, body, score, closeddate 0.331

13 System Architecture class, make, system, architecture, work, person, file, problem, implement, project 0.206

14 Architecture Documentation architecture, document, score, owneruserid, favoritecount, title, viewcount, closeddate,
commentcount, describe 0.529

15 Layered Architecture layer, datum, object, business, model, entity, access, tier, domain, public 0.542

16 Service Oriented Architecture service, architecture, feature, description, project, yesod, archstudio, site, process, file 0.308

17 Architecture Software architecture, software, system, difference, enterprise, term, question, style, model, soa 0.410

18 Client Server Architecture server, client, web, application, app, framework, side, user, develop, template 0.421

19 Software Application software, view, application, operation, design, question, architect, pattern, follow, stuff 0.344

20 Data Types type, int, size, byte, return, mem, function, memory, create, variable 0.365

21 Architecture Information architectural, architecture, system, information, make, project, book, people, thing, interested 0.278

22 Architecture Solution datum, user, architecture, solution, separate, point, token, project, approach, update 0.420

23 Module Design module, application, design, message, architecture, define, type, project, gt, object 0.317

24 Features of Architecture Tool architecture, software, system, requirement, design, find, structure, part, build, documentation 0.539

25 Learning Architecture Software design, learn, architecture, software, good, write, pattern, answer, application, language 0.362

26 Post Attributes title, creationdate, parentid, favoritecount, posttypeid, lasteditdate, answer-count, body, viewcount,
closeddate 0.613

27 Architecture Definition component, create, type, structure, interface, outer, connector, signature, archipelago, open 0.510

28 Architecture Description
Languages architecture, software, language, question, description, adl, computer, compare, topic, tool 0.328

29 Object Oriented class, public, connection, endpoint, abstract, method, inherit, ftgw, client, source 0.313

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

21

• Gamification and Skill Enhancement: Recognizing the importance of continuous skill
enhancement in software architecture, this category emphasizes the role of gamification and
innovative learning approaches. Gamification mechanisms offer engaging platforms for IT
professionals to enhance their design skills and deepen their under- standing of architectural
concepts. By incorporating gamified elements into educational initiatives, practitioners can
be incentivized to actively participate in skill-building activities, thereby fostering a culture of
continuous learning and improvement.

• Tool Support and Collaboration: The category of tool support and collaboration underscores
the significance of leveraging technology and fostering collaborative efforts within the software
architecture community. Developing tools equipped with architecture knowledge sharing
capabilities can enhance information dissemination and problem-solving efficiency. Additionally,
bridging the gap between researchers and practitioners through collaborative initiatives and
standardization efforts is essential for advancing the field and addressing common challenges
effectively.

Figure 7. Concept Map of issues belonging to more than three categories

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

22

• Visualization and Representation: Visualization techniques and standardized representations
play a pivotal role in conveying complex architectural concepts and facilitating informed decision-
making processes. This category high- lights the importance of exploring visualization methods
for architecture evaluation and enhancing comprehension among stakeholders. Furthermore,
advocating for standardized architectural representations using languages such as ADLs and
UML can promote consistency and clarity in architectural documentation, enabling more effective
communication and collaboration.

5.1 evaluation with LLMs
Evaluation of the results of the proposed model was also performed with Generative Pre-trained
Transformer (GPT) and Bidirectional Representation of Architectures in Transformers (BRAD).
The query “please give me the concerns or problems that IT professionals face during designing
software architecture” was submitted to both GPT and BRAD to retrieve responses related to the
concerns and problems encountered during the design of software architecture. GPT and BRAD
were tasked with generating responses to the query based on their understanding of the domain and
the data they were trained on. The retrieved responses were then compared to identify similarities
and differences in their representations of the concerns and problems faced by IT professionals in
designing software architecture.

The comparison results presented in Table 8 highlight the responses generated by the Proposed
Model, GPT, and BRAD to the query regarding concerns and problems faced by IT professionals during
software architecture design. The table provides insights into the areas of agreement and divergence
between the models, shedding light on their understanding of the challenges inherent in this domain.

5.2 Areas of Agreement Between the Proposed and LLMs
Knowledge Management: All three models acknowledge the importance of knowledge management
in software architecture design, indicating a shared recognition of the need to effectively manage and
disseminate architectural knowledge within organizations.

Integration Issues: The models agree on the existence of integration issues during software
architecture design, reflecting a common understanding of the challenges associated with integrating
diverse components and systems to create cohesive software solutions.

Integration of Non-Functional Requirements (NFRs): The models recognize the significance of
integrating non- functional requirements, such as performance, security, and scalability, into software
architecture design, underscoring the importance of addressing these factors to ensure the success
of software projects.

Table 6. Top Eight Topics

ID Topic Rate

15 Layered Architecture 0.542

24 Features of Architecture Tool 0.539

14 Architecture Documentation 0.529

27 Architecture Definition 0.510

18 Client Server Architecture 0.421

22 Architecture Solution 0.420

0 Database Application Design 0.411

17 Architecture Software 0.410

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

23

Table 7. Comparison and Analysis

Issue Literature Categorization and Analysis

Architecture standardization
Informal representation of architecture
components and behavior (). Modeling
concerns ad- dressed by standardization ().

Standardization of representation required
for clarity and formality in architecture
diagrams. Queries about architecture
representation, drawing, and learning can
be ad- dressed through standardization.

Project delay
Limited focus on architecture leads to
software project delays (Malavolta et al.,
2013).

Categorization of questions needed for
solution database maintenance to avoid
adhoc development.

Software Integration Incompatible XML schemas pose
integration challenges ().

Development of software solutions for
architecture integration required. UML
Refactoring tool () may assist.

Non Functional Requirements (NFR) Handling NFRs at project end compromises
quality (Khan et al., 2016).

Integration of NFRs at architecture level
discussed for learning purposes.

Flexible Architecture Design flexibility for accommodating
changes essential (Keeling, 2015).

Tools like UML Refactoring (Deryugina
et al., 2019) and DV8 (Cai and Kazman,
2019) can achieve flexibility.

Design learning
Card games and gamification tested for
teaching design (Schriek et al., 2016;
Mayer and Weinreich, 2019).

Games and gamification mechanisms
useful for learning and understanding
architecture.

Visualization Techniques (VTs) Limited evaluation of VTs for software
architecture ().

Knowledge from CQA sites can evaluate
architecture and ADL tools.

ADLs developed in Isolation Architecture
Knowledge Management

ADLs developed in isolation lack business
context (Taylor, 2019; Garlan et al., 2002).
Architecture Knowledge Management
challenges (Mayer and Weinreich, 2019;
Wan et al., 2023; Capilla et al., 2016).

ADLs need comparison and classification
based on do- main for selection and
evaluation.

Suitable ADL selection
Difficulties in comparing ADLs due to
diverse features (Medvidovic and Taylor,
2000).

Classification and comparison of ADLs
required based on domain and features for
selection.

Limited use of ADL
ADLs not mainstream due to formal anal-
ysis, usability, and reliability challenges
(Ozkaya and Kloukinas, 2013).

Queries on UML ADL and usage of ADLs
for substitution to UML. ADLs need to be
feature-rich and dependable.

Academic perspective ADLs developed primarily for academic
use (Fuxman, 2000).

Interest in ADLs for architectural
implementation, learning, and
understanding. Need for industry-oriented
ADLs.

Gap between practitioners and research
community

Communication gap between practitioners
and researchers limits ADL usage
(Bradbury et al., 2004).

Queries on ADL usage for ERP systems
and API writing. Need for industry-
oriented ADLs.

ADL standardization
Lack of general-purpose ADLs due to lack
of standardization (Woods and Bashroush,
2012).

Standardization necessary for general-
purpose and domain-specific ADLs.

Enterprise data analysis Challenges in analyzing large enterprise
data volumes (Woods, 2005).

Queries on architecture description
and tools for enterprise application
development and analysis.

UML ADL
UML elements found in recent ADLs, but
deficiencies remain (Clements, 1996; Wan
et al., 2023).

Queries on architectural representations
using ADL & UML. ADLs need to address
issues with business model- ing.

Standard for system behavior Lack of universal standards for system
behavior in ADLs ().

Standardization needed to classify ADLs
into groups for better understanding.

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

24

5.3 Areas of divergence Between the Proposed and LLMs
Gamification: While the Proposed Model highlights the potential benefits of incorporating gamification
techniques into software architecture design, responses from GPT and BRAD on this concern are not
available, suggesting a potential gap in their understanding of this aspect.

Visualization: Only the Proposed Model emphasizes the importance of visualization techniques
in software architecture design. Responses from GPT and BRAD on this concern are not available,
indicating a potential oversight in their representation of this aspect of software architecture.

The comparison results also reveal several areas where responses from GPT and BRAD are
not available, indicating potential limitations or gaps in their understanding of certain concerns and
problems related to software architecture design. This underscores the need for further investigation
and refinement of these models to ensure their comprehensive coverage of the domain.

Overall, the comparison provides valuable insights into the strengths and limitations of the
Proposed Model, GPT, and BRAD in representing the concerns and problems faced by IT professionals
during software architecture design. By analyzing the areas of agreement and divergence between the
models, we can gain a deeper understanding of their respective capabilities and areas for improvement,
informing future research and development efforts in this field.

6. ConCLuSIon And FuTuRe woRK

In this research, we reviewed different papers about software architecture. The principal motivation
behind our examination was to recognize issues/problems related to software architecture. At first, we
gathered different issues of software architecture from research papers. Next, to distinguish the issues
looked at by software engineers, we gathered information from different CQA sites and mailing lists.

Table 8. Comparison of Proposed Model with GPT and BARD

Knowledge Management Yes Yes Yes

Standard Notations Yes Yes -

Integration Issues Yes Yes Yes

Integration of NFRs Yes Yes Yes

Flexible Architecture Yes Yes Yes

Gamification Yes - -

Tool Support Yes - Yes

Visualization Yes - -

ADLs for Academia Yes - -

ADLs Selection Yes - -

Limited usage of ADLs Yes - -

Professional Tools Yes - -

Research and Practical GAP Yes - Yes

ADLs Standardization Yes - -

Enterprise Application Develop- Yes Yes -

Ment

Architecture Representation Yes Yes Yes

Architecture Levels Yes - Yes

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

25

We utilized different text analytics to feature the key terms and utilized grounded theory to feature
and categorize the issues. We compared our outcomes and the results of different research papers
for benchmarking. We additionally proposed solutions to the distinguished issues gathered from the
research papers and the collection of Q&A data.

In addition to the issues identified in Section 5, during the coding of posts, we observed that
most people are confused about software architecture, and some are mixing the basic concepts of
software architecture. Most of the questions asked are related to literature requests, suitable examples,
and knowledge of architecture. The community is confused about the usage of various architectural
patterns and styles. Various people also ask about selecting suitable architecture for a specific
problem. Being frequent tri-gram tokens, ADLs are not a popular topic on Q&A sites, and there are
very limited questions about ADLs. The most frequently asked questions about ADLs are about the
advantages of ADLs, domain- driven design, ADL tools, limitations of ADLs, evaluation of ADLs,
and domain-specific ADLs.

In the future, we plan to extend our analysis of Q&A sites by analyzing the behavior of the
software architect’s community. We also plan to extend our analysis by applying topic modeling to
research papers and community posts. After that, we will try to fill the gap in published literature on
various software architecture topics and work to find solutions to these topics posted on community
question-answering sites by software engineers.

ACKnowLedgMenT

We thank our colleagues who motivated and helped us complete this research. Special thanks to all
the anonymous reviewers working day and night to facilitate the researchers by providing valuable
feedback to improve the quality of the research.

dISCLoSuRe STATeMenT

The authors declare that they have no conflict of interest.

FundIng STATeMenT

No funding was received for this work.

PRoCeSS dATeS

Received: January 4, 2024, Revision: March 15, 2024, Accepted: March 13, 2024

CoRReSPondIng AuTHoR

Correspondence should be addressed to Zeeshan Anwar (zeeshan0333@yahoo.com)

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

26

ReFeRenCeS

Allamanis, M., & Sutton, C. (2013). Why, when, and what: analyzing stack overflow questions by topic, type,
and code, Proceedings of the 10th Working Conference on Mining Software Repositories, IEEE Press, pp. 53–56.
doi:10.1109/MSR.2013.6624004

Anwar, Z., & Afzal, H. (2024). Mining crowd sourcing repositories for open innovation in software engineering.
Automated Software Engineering, 31(1), 11. doi:10.1007/s10515-023-00410-z

Anwar, Z., Afzal, H., Ahsan, A., Iltaf, N., & Maqbool, A. (2023). A novel hybrid cnn-lstm approach for assessing
stackoverflow post quality. Journal of Intelligent Systems, 32(1), 20230057. doi:10.1515/jisys-2023-0057

Arwan, A., Rochimah, S., & Akbar, R. J. (2015). Source code retrieval on stackoverflow using lda, Information
and Communication Technology (ICoICT), 2015 3rd International Conference on, IEEE, pp. 295–299.

Bajaj, K., Pattabiraman, K., & Mesbah, A. (2014). Mining questions asked by web developers, Proceedings of the
11th Working Conference on Mining Software Repositories, ACM, pp. 112–121. doi:10.1145/2597073.2597083

Barua, A., Thomas, S. W., & Hassan, A. E. (2014). What are developers talking about? an analysis of topics and
trends in stack overflow. Empirical Software Engineering, 19(3), 619–654. doi:10.1007/s10664-012-9231-y

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice. Addison-Wesley Professional.

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating
networks. Proceedings of the ... International AAAI Conference on Weblogs and Social Media. International
AAAI Conference on Weblogs and Social Media, 8(1), 361–362. doi:10.1609/icwsm.v3i1.13937

Bazelli, B., Hindle, A., & Stroulia, E. (2013). On the personality traits of stackoverflow users, Software
maintenance (ICSM), 2013 29th IEEE international conference on, IEEE, pp. 460–463.

Bosu, A., Corley, C. S., Heaton, D., Chatterji, D., Carver, J. C., & Kraft, N. A. (2013). Building reputation in
stackover- flow: an empirical investigation, Mining Software Repositories (MSR), 2013 10th IEEE Working
Conference on, IEEE, pp. 89–92.

Bradbury, J. S., Cordy, J. R., Dingel, J., & Wermelinger, M. (2004). A survey of self-management in dynamic
software architecture specifications, Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems,
ACM, pp. 28– 33. doi:10.1145/1075405.1075411

Cai, Y., & Kazman, R. (2019). Dv8: automated architecture analysis tool suites, Proceedings of the Second
International Conference on Technical Debt, IEEE Press, pp. 53–54.

Campbell, J. C., Zhang, C., Xu, Z., Hindle, A., & Miller, J. (2013). Deficient documentation detection: a
methodology to locate deficient project documentation using topic analysis, Proceedings of the 10th Working
Conference on Mining Software Repositories, IEEE Press, pp. 57–60. doi:10.1109/MSR.2013.6624005

Capilla, R., Jansen, A., Tang, A., Avgeriou, P., & Babar, M. A. (2016). 10 years of software architecture knowledge
management: Practice and future. Journal of Systems and Software, 116, 191–205. doi:10.1016/j.jss.2015.08.054

Chandra, Y., & Liang, E. S. (2016). Qualitative Data Analysis with RQDA. Springer Singapore.

Clements, P. C. (1996). A survey of architecture description languages, Proceedings of the 8th international
workshop on software specification and design, IEEE Computer Society, p. 16. doi:10.1109/IWSSD.1996.501143

Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria.
Qualitative Sociology, 13(1), 3–21. doi:10.1007/BF00988593

de Souza, L. B., Campos, E. C., & Maia, M. A. (2014). Ranking crowd knowledge to assist software
development, Proceedings of the 22nd International Conference on Program Comprehension, ACM, pp. 72–82.
doi:10.1145/2597008.2597146

Deryugina, O., Nikulchev, E., Ryadchikov, I., Sechenev, S., & Shmalko, E. (2019). Analysis of the anywalker
software architecture using the uml refactoring tool. Procedia Computer Science, 150, 743–750. doi:10.1016/j.
procs.2019.02.005

http://dx.doi.org/10.1109/MSR.2013.6624004
http://dx.doi.org/10.1007/s10515-023-00410-z
http://dx.doi.org/10.1515/jisys-2023-0057
http://dx.doi.org/10.1145/2597073.2597083
http://dx.doi.org/10.1007/s10664-012-9231-y
http://dx.doi.org/10.1609/icwsm.v3i1.13937
http://dx.doi.org/10.1145/1075405.1075411
http://dx.doi.org/10.1109/MSR.2013.6624005
http://dx.doi.org/10.1016/j.jss.2015.08.054
http://dx.doi.org/10.1109/IWSSD.1996.501143
http://dx.doi.org/10.1007/BF00988593
http://dx.doi.org/10.1145/2597008.2597146
http://dx.doi.org/10.1016/j.procs.2019.02.005
http://dx.doi.org/10.1016/j.procs.2019.02.005

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

27

Di Pompeo, D., & Tucci, M. (2023). Quality attributes optimization of software architecture: Research challenges
and directions, 2023 IEEE 20th International Conference on Software Architecture Companion (ICSA-C), IEEE,
pp. 252– 255.

Dimov, A., Emanuilov, S., Bontchev, B., Dankov, Y., & Papapostolu, T. (2022). Architectural approaches to
overcome challenges in the development of data-intensive systems. Human Factors in Software and Systems
Engineering, 61, 38. doi:10.54941/ahfe1002521

Fuxman, A. D. (2000). A survey of architecture description languages, Technical report. Penn State.

Galster, M., & Weyns, D. (2023). Empirical research in software architecture—Perceptions of the community.
Journal of Systems and Software, 202, 111684. doi:10.1016/j.jss.2023.111684

Garlan, D., Cheng, S.-W., & Kompanek, A. J. (2002). Reconciling the needs of architectural description
with object- modeling notations. Science of Computer Programming, 44(1), 23–49. doi:10.1016/S0167-
6423(02)00031-X

Garlan, D., Monroe, R., & Wile, D. (2010). Acme: An architecture description interchange language, CASCON
First Decade High Impact Papers. IBM Press. doi:10.1145/1925805.1925814

Group, R. I. (2012). Mining Your Qualitative Text, Technical report. R Interest Group.

Guamán, D., Pérez, J., Diaz, J., & Cuesta, C. E. (2020). Towards a reference process for software architecture
recon- struction. IET Software, 14(6), 592–606. doi:10.1049/iet-sen.2019.0246

Hasselbring, W. (2018). Software architecture: Past, present, future, The Essence of Software Engineering.
Springer.

Ho-Quang, T., Chaudron, M. R., Hebig, R., & Robles, G. (2020). Challenges and directions for a community
infrastruc- ture for big data-driven research in software architecture. Model Management and Analytics for
Large Scale Systems.

Kamal, A. W., & Avgeriou, P. (2007). An evaluation of adls on modeling patterns for software architecture,
Proceed- ings of the 4th International Workshop on Rapid Integration of Software Engineering Techniques
(RISE 2007). LNCS. Springer, Heidelberg.

Keeling, M. (2015). Lightweight and flexible: Emerging trends in software architecture from the saturn
conferences. IEEE Software, 32(3), 7–11. doi:10.1109/MS.2015.65

Khan, F., Jan, S. R., Tahir, M., Khan, S., & Ullah, F. (2016). Survey: Dealing non-functional requirements at
architecture level. VFAST Transactions on Software Engineering, 9(2), 7–13. doi:10.21015/vtse.v9i2.410

Land, R. (2002). A brief survey of software architecture, Technical report. Malardalen University.

Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., & Tang, A. (2013). What industry needs from architectural
languages: A survey. IEEE Transactions on Software Engineering, 39(6), 869–891. doi:10.1109/TSE.2012.74

Mayer, B., & Weinreich, R. (2019). The effect of gamification on software architecture knowledge management:
a student experiment and focus group study, Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, ACM, pp. 1731–1740. doi:10.1145/3297280.3297449

McCallum, A. K. (2002). Mallet: A machine learning for language toolkit, http://mallet. cs. umass. edu.

Mckenzie, F. D., Petty, M. D., & Xu, Q. (2004). Usefulness of software architecture description languages
for modeling and analysis of federates and federation architectures. Simulation, 80(11), 559–576.
doi:10.1177/0037549704050185

Medvidovic, N., & Taylor, R. N. (2000). A classification and comparison framework for software architecture
description languages. IEEE Transactions on Software Engineering, 26(1), 70–93. doi:10.1109/32.825767

Mishra, P., & Dutt, N. (2005). Architecture description languages for programmable embedded systems. IEE
Proceedings. Computers and Digital Techniques, 152(3), 285–297. doi:10.1049/ip-cdt:20045071

Navasa, A., Pérez-Toledano, M. A., & Murillo, J. M. (2009). An adl dealing with aspects at software architecture
stage. Information and Software Technology, 51(2), 306–324. doi:10.1016/j.infsof.2008.03.009

http://dx.doi.org/10.54941/ahfe1002521
http://dx.doi.org/10.1016/j.jss.2023.111684
http://dx.doi.org/10.1016/S0167-6423(02)00031-X
http://dx.doi.org/10.1016/S0167-6423(02)00031-X
http://dx.doi.org/10.1145/1925805.1925814
http://dx.doi.org/10.1049/iet-sen.2019.0246
http://dx.doi.org/10.1109/MS.2015.65
http://dx.doi.org/10.21015/vtse.v9i2.410
http://dx.doi.org/10.1109/TSE.2012.74
http://dx.doi.org/10.1145/3297280.3297449
http://mallet.cs
http://dx.doi.org/10.1177/0037549704050185
http://dx.doi.org/10.1109/32.825767
http://dx.doi.org/10.1049/ip-cdt:20045071
http://dx.doi.org/10.1016/j.infsof.2008.03.009

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

28

OMG (2007). OMG Unified Modeling Language Specification.

Othmane, L. B., & Lamm, M. (2019). Mindset for software architecture students, 2019 IEEE 43rd Annual
Computer Software and Applications Conference (COMPSAC), Vol. 2, IEEE, pp. 306–311.

Ozkaya, M., & Kloukinas, C. (2013). Are we there yet? analyzing architecture description languages for formal
analysis, usability, and realizability, 2013 39th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA), IEEE, pp. 177–184.

Rehman, N., & Khan, A. W. (2022). Critical Challenges of Designing Software Architecture for Internet
of Things (IoT) Software System. John Wiley Sons, Ltd., URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/9781119821779.ch11 doi:10.1002/9781119821779.ch11

Schriek, C., van der Werf, J. M. E., Tang, A., & Bex, F. (2016). Software architecture design reasoning: A
card game to help novice designers, European Conference on Software Architecture, Springer, pp. 22–38.
doi:10.1007/978-3-319-48992-6_2

Seifermann, S., Ta¸spolato˘, T., Reussner, R. and Heinrich, R. (2018). Challenges in secure software evolution-
the role of software architecture.

Shahin, M., Liang, P., & Babar, M. A. (2014). A systematic review of software architecture visualization
techniques. Journal of Systems and Software, 94, 161–185. doi:10.1016/j.jss.2014.03.071

Soliman, M., Galster, M., & Avgeriou, P. (2021). An exploratory study on architectural knowledge in issue
tracking systems, European Conference on Software Architecture, Springer, pp. 117–133. doi:10.1007/978-3-
030-86044-8_8

Tamburri, D., Kazman, R., & Van Den Heuvel, W.-J. (2019). Splicing community and software architecture
smells in agile teams: An industrial study, Proceedings of the 52nd Hawaii International Conference on System
Sciences. doi:10.24251/HICSS.2019.843

Taylor, J. T., Taylor, W. T., Taylor, J. T., & Taylor, W. T. (2021). Software architecture, Patterns in the Machine:
A Software Engineering Guide to Embedded Development pp. 63–82.

Taylor, R. N. (2019). Software architecture and design, Handbook of Software Engineering. Springer.

Tian, F., Liang, P., & Babar, M. A. (2019). How developers discuss architecture smells? an exploratory study on
stack overflow, 2019 IEEE International Conference on Software Architecture (ICSA), pp. 91–100. doi:10.1109/
ICSA.2019.00018

Villegas, N., Tamura, G., & Müller, H. (2017). Architecting software systems for runtime self-adaptation:
Concepts, models, and challenges, Managing trade-offs in adaptable software architectures. Elsevier. doi:10.1016/
B978-0-12-802855-1.00002-2

Wan, Z., Zhang, Y., Xia, X., Jiang, Y., & Lo, D. (2023). Software architecture in practice: Challenges and
opportunities, Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 1457–1469. doi:10.1145/3611643.3616367

Whiting, E., & Andrews, S. (2020). Drift and erosion in software architecture: summary and prevention strategies,
Proceedings of the 2020 the 4th International Conference on Information System and Data Mining, pp. 132–138.
doi:10.1145/3404663.3404665

Woods, E. (2005). Architecture description languages and information systems architects: Never the twain shall
meet? Artechra white paper.

Woods, E., & Bashroush, R. (2012). Using an architecture description language to model a large-scale information
system–an industrial experience report, Software Architecture (WICSA) and European Conference on Software
Archi- tecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on, IEEE, pp. 239–243.

Woods, E., & Hilliard, R. (2005). Architecture description languages in practice session report, WICSA 5. IEEE.

Zhao, Y. (2016). Architecture: Description Really Matters. Skyscrapr, 4, 1–6.

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119821779.ch11
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119821779.ch11
http://dx.doi.org/10.1002/9781119821779.ch11
http://dx.doi.org/10.1007/978-3-319-48992-6_2
http://dx.doi.org/10.1016/j.jss.2014.03.071
http://dx.doi.org/10.1007/978-3-030-86044-8_8
http://dx.doi.org/10.1007/978-3-030-86044-8_8
http://dx.doi.org/10.24251/HICSS.2019.843
http://dx.doi.org/10.1109/ICSA.2019.00018
http://dx.doi.org/10.1109/ICSA.2019.00018
http://dx.doi.org/10.1016/B978-0-12-802855-1.00002-2
http://dx.doi.org/10.1016/B978-0-12-802855-1.00002-2
http://dx.doi.org/10.1145/3611643.3616367
http://dx.doi.org/10.1145/3404663.3404665

International Journal of Human Capital and Information Technology Professionals
Volume 15 • Issue 1

29

endnoTeS

 1 https://github.com/zeeshan0333/Architecture
 2 https://github.com/zeeshan0333/Architecture
 3 https://github.com/zeeshan0333/Architecture

https://github.com/zeeshan0333/Architecture
https://github.com/zeeshan0333/Architecture
https://github.com/zeeshan0333/Architecture

